↳ PROLOG
↳ PrologToPiTRSProof
With regard to the inferred argument filtering the predicates were used in the following modes:
prime1: (b)
pr2: (b,b)
not_divides2: (b,b)
div3: (b,b,f)
quot4: (b,b,b,f)
times3: (b,b,f)
add3: (b,b,f)
neq2: (b,b)
Transforming PROLOG into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
prime_1_in_g1(s_11(s_11(X))) -> if_prime_1_in_1_g2(X, pr_2_in_gg2(s_11(s_11(X)), s_11(X)))
pr_2_in_gg2(X, s_11(0_0)) -> pr_2_out_gg2(X, s_11(0_0))
pr_2_in_gg2(X, s_11(s_11(Y))) -> if_pr_2_in_1_gg3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
not_divides_2_in_gg2(Y, X) -> if_not_divides_2_in_1_gg3(Y, X, div_3_in_gga3(X, Y, U))
div_3_in_gga3(X, Y, Z) -> if_div_3_in_1_gga4(X, Y, Z, quot_4_in_ggga4(X, Y, Y, Z))
quot_4_in_ggga4(0_0, s_11(Y), s_11(Z), 0_0) -> quot_4_out_ggga4(0_0, s_11(Y), s_11(Z), 0_0)
quot_4_in_ggga4(s_11(X), s_11(Y), Z, U) -> if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_in_ggga4(X, Y, Z, U))
quot_4_in_ggga4(X, 0_0, s_11(Z), s_11(U)) -> if_quot_4_in_2_ggga4(X, Z, U, quot_4_in_ggga4(X, s_11(Z), s_11(Z), U))
if_quot_4_in_2_ggga4(X, Z, U, quot_4_out_ggga4(X, s_11(Z), s_11(Z), U)) -> quot_4_out_ggga4(X, 0_0, s_11(Z), s_11(U))
if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_out_ggga4(X, Y, Z, U)) -> quot_4_out_ggga4(s_11(X), s_11(Y), Z, U)
if_div_3_in_1_gga4(X, Y, Z, quot_4_out_ggga4(X, Y, Y, Z)) -> div_3_out_gga3(X, Y, Z)
if_not_divides_2_in_1_gg3(Y, X, div_3_out_gga3(X, Y, U)) -> if_not_divides_2_in_2_gg4(Y, X, U, times_3_in_gga3(U, Y, Z))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, add_3_in_gga3(U, Y, Z))
add_3_in_gga3(X, 0_0, X) -> add_3_out_gga3(X, 0_0, X)
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, add_3_out_gga3(U, Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_not_divides_2_in_2_gg4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_in_gg2(X, Z))
neq_2_in_gg2(s_11(X), 0_0) -> neq_2_out_gg2(s_11(X), 0_0)
neq_2_in_gg2(0_0, s_11(X)) -> neq_2_out_gg2(0_0, s_11(X))
neq_2_in_gg2(s_11(X), s_11(Y)) -> if_neq_2_in_1_gg3(X, Y, neq_2_in_gg2(X, Y))
if_neq_2_in_1_gg3(X, Y, neq_2_out_gg2(X, Y)) -> neq_2_out_gg2(s_11(X), s_11(Y))
if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_out_gg2(X, Z)) -> not_divides_2_out_gg2(Y, X)
if_pr_2_in_1_gg3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> if_pr_2_in_2_gg3(X, Y, pr_2_in_gg2(X, s_11(Y)))
if_pr_2_in_2_gg3(X, Y, pr_2_out_gg2(X, s_11(Y))) -> pr_2_out_gg2(X, s_11(s_11(Y)))
if_prime_1_in_1_g2(X, pr_2_out_gg2(s_11(s_11(X)), s_11(X))) -> prime_1_out_g1(s_11(s_11(X)))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of PROLOG
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
prime_1_in_g1(s_11(s_11(X))) -> if_prime_1_in_1_g2(X, pr_2_in_gg2(s_11(s_11(X)), s_11(X)))
pr_2_in_gg2(X, s_11(0_0)) -> pr_2_out_gg2(X, s_11(0_0))
pr_2_in_gg2(X, s_11(s_11(Y))) -> if_pr_2_in_1_gg3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
not_divides_2_in_gg2(Y, X) -> if_not_divides_2_in_1_gg3(Y, X, div_3_in_gga3(X, Y, U))
div_3_in_gga3(X, Y, Z) -> if_div_3_in_1_gga4(X, Y, Z, quot_4_in_ggga4(X, Y, Y, Z))
quot_4_in_ggga4(0_0, s_11(Y), s_11(Z), 0_0) -> quot_4_out_ggga4(0_0, s_11(Y), s_11(Z), 0_0)
quot_4_in_ggga4(s_11(X), s_11(Y), Z, U) -> if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_in_ggga4(X, Y, Z, U))
quot_4_in_ggga4(X, 0_0, s_11(Z), s_11(U)) -> if_quot_4_in_2_ggga4(X, Z, U, quot_4_in_ggga4(X, s_11(Z), s_11(Z), U))
if_quot_4_in_2_ggga4(X, Z, U, quot_4_out_ggga4(X, s_11(Z), s_11(Z), U)) -> quot_4_out_ggga4(X, 0_0, s_11(Z), s_11(U))
if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_out_ggga4(X, Y, Z, U)) -> quot_4_out_ggga4(s_11(X), s_11(Y), Z, U)
if_div_3_in_1_gga4(X, Y, Z, quot_4_out_ggga4(X, Y, Y, Z)) -> div_3_out_gga3(X, Y, Z)
if_not_divides_2_in_1_gg3(Y, X, div_3_out_gga3(X, Y, U)) -> if_not_divides_2_in_2_gg4(Y, X, U, times_3_in_gga3(U, Y, Z))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, add_3_in_gga3(U, Y, Z))
add_3_in_gga3(X, 0_0, X) -> add_3_out_gga3(X, 0_0, X)
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, add_3_out_gga3(U, Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_not_divides_2_in_2_gg4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_in_gg2(X, Z))
neq_2_in_gg2(s_11(X), 0_0) -> neq_2_out_gg2(s_11(X), 0_0)
neq_2_in_gg2(0_0, s_11(X)) -> neq_2_out_gg2(0_0, s_11(X))
neq_2_in_gg2(s_11(X), s_11(Y)) -> if_neq_2_in_1_gg3(X, Y, neq_2_in_gg2(X, Y))
if_neq_2_in_1_gg3(X, Y, neq_2_out_gg2(X, Y)) -> neq_2_out_gg2(s_11(X), s_11(Y))
if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_out_gg2(X, Z)) -> not_divides_2_out_gg2(Y, X)
if_pr_2_in_1_gg3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> if_pr_2_in_2_gg3(X, Y, pr_2_in_gg2(X, s_11(Y)))
if_pr_2_in_2_gg3(X, Y, pr_2_out_gg2(X, s_11(Y))) -> pr_2_out_gg2(X, s_11(s_11(Y)))
if_prime_1_in_1_g2(X, pr_2_out_gg2(s_11(s_11(X)), s_11(X))) -> prime_1_out_g1(s_11(s_11(X)))
PRIME_1_IN_G1(s_11(s_11(X))) -> IF_PRIME_1_IN_1_G2(X, pr_2_in_gg2(s_11(s_11(X)), s_11(X)))
PRIME_1_IN_G1(s_11(s_11(X))) -> PR_2_IN_GG2(s_11(s_11(X)), s_11(X))
PR_2_IN_GG2(X, s_11(s_11(Y))) -> IF_PR_2_IN_1_GG3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
PR_2_IN_GG2(X, s_11(s_11(Y))) -> NOT_DIVIDES_2_IN_GG2(s_11(s_11(Y)), X)
NOT_DIVIDES_2_IN_GG2(Y, X) -> IF_NOT_DIVIDES_2_IN_1_GG3(Y, X, div_3_in_gga3(X, Y, U))
NOT_DIVIDES_2_IN_GG2(Y, X) -> DIV_3_IN_GGA3(X, Y, U)
DIV_3_IN_GGA3(X, Y, Z) -> IF_DIV_3_IN_1_GGA4(X, Y, Z, quot_4_in_ggga4(X, Y, Y, Z))
DIV_3_IN_GGA3(X, Y, Z) -> QUOT_4_IN_GGGA4(X, Y, Y, Z)
QUOT_4_IN_GGGA4(s_11(X), s_11(Y), Z, U) -> IF_QUOT_4_IN_1_GGGA5(X, Y, Z, U, quot_4_in_ggga4(X, Y, Z, U))
QUOT_4_IN_GGGA4(s_11(X), s_11(Y), Z, U) -> QUOT_4_IN_GGGA4(X, Y, Z, U)
QUOT_4_IN_GGGA4(X, 0_0, s_11(Z), s_11(U)) -> IF_QUOT_4_IN_2_GGGA4(X, Z, U, quot_4_in_ggga4(X, s_11(Z), s_11(Z), U))
QUOT_4_IN_GGGA4(X, 0_0, s_11(Z), s_11(U)) -> QUOT_4_IN_GGGA4(X, s_11(Z), s_11(Z), U)
IF_NOT_DIVIDES_2_IN_1_GG3(Y, X, div_3_out_gga3(X, Y, U)) -> IF_NOT_DIVIDES_2_IN_2_GG4(Y, X, U, times_3_in_gga3(U, Y, Z))
IF_NOT_DIVIDES_2_IN_1_GG3(Y, X, div_3_out_gga3(X, Y, U)) -> TIMES_3_IN_GGA3(U, Y, Z)
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> IF_TIMES_3_IN_1_GGA4(X, Y, Z, times_3_in_gga3(X, Y, U))
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
IF_TIMES_3_IN_1_GGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> IF_TIMES_3_IN_2_GGA5(X, Y, Z, U, add_3_in_gga3(U, Y, Z))
IF_TIMES_3_IN_1_GGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> ADD_3_IN_GGA3(U, Y, Z)
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_ADD_3_IN_1_GGA4(X, Y, Z, add_3_in_gga3(X, Y, Z))
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
IF_NOT_DIVIDES_2_IN_2_GG4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> IF_NOT_DIVIDES_2_IN_3_GG4(Y, X, Z, neq_2_in_gg2(X, Z))
IF_NOT_DIVIDES_2_IN_2_GG4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> NEQ_2_IN_GG2(X, Z)
NEQ_2_IN_GG2(s_11(X), s_11(Y)) -> IF_NEQ_2_IN_1_GG3(X, Y, neq_2_in_gg2(X, Y))
NEQ_2_IN_GG2(s_11(X), s_11(Y)) -> NEQ_2_IN_GG2(X, Y)
IF_PR_2_IN_1_GG3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> IF_PR_2_IN_2_GG3(X, Y, pr_2_in_gg2(X, s_11(Y)))
IF_PR_2_IN_1_GG3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> PR_2_IN_GG2(X, s_11(Y))
prime_1_in_g1(s_11(s_11(X))) -> if_prime_1_in_1_g2(X, pr_2_in_gg2(s_11(s_11(X)), s_11(X)))
pr_2_in_gg2(X, s_11(0_0)) -> pr_2_out_gg2(X, s_11(0_0))
pr_2_in_gg2(X, s_11(s_11(Y))) -> if_pr_2_in_1_gg3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
not_divides_2_in_gg2(Y, X) -> if_not_divides_2_in_1_gg3(Y, X, div_3_in_gga3(X, Y, U))
div_3_in_gga3(X, Y, Z) -> if_div_3_in_1_gga4(X, Y, Z, quot_4_in_ggga4(X, Y, Y, Z))
quot_4_in_ggga4(0_0, s_11(Y), s_11(Z), 0_0) -> quot_4_out_ggga4(0_0, s_11(Y), s_11(Z), 0_0)
quot_4_in_ggga4(s_11(X), s_11(Y), Z, U) -> if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_in_ggga4(X, Y, Z, U))
quot_4_in_ggga4(X, 0_0, s_11(Z), s_11(U)) -> if_quot_4_in_2_ggga4(X, Z, U, quot_4_in_ggga4(X, s_11(Z), s_11(Z), U))
if_quot_4_in_2_ggga4(X, Z, U, quot_4_out_ggga4(X, s_11(Z), s_11(Z), U)) -> quot_4_out_ggga4(X, 0_0, s_11(Z), s_11(U))
if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_out_ggga4(X, Y, Z, U)) -> quot_4_out_ggga4(s_11(X), s_11(Y), Z, U)
if_div_3_in_1_gga4(X, Y, Z, quot_4_out_ggga4(X, Y, Y, Z)) -> div_3_out_gga3(X, Y, Z)
if_not_divides_2_in_1_gg3(Y, X, div_3_out_gga3(X, Y, U)) -> if_not_divides_2_in_2_gg4(Y, X, U, times_3_in_gga3(U, Y, Z))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, add_3_in_gga3(U, Y, Z))
add_3_in_gga3(X, 0_0, X) -> add_3_out_gga3(X, 0_0, X)
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, add_3_out_gga3(U, Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_not_divides_2_in_2_gg4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_in_gg2(X, Z))
neq_2_in_gg2(s_11(X), 0_0) -> neq_2_out_gg2(s_11(X), 0_0)
neq_2_in_gg2(0_0, s_11(X)) -> neq_2_out_gg2(0_0, s_11(X))
neq_2_in_gg2(s_11(X), s_11(Y)) -> if_neq_2_in_1_gg3(X, Y, neq_2_in_gg2(X, Y))
if_neq_2_in_1_gg3(X, Y, neq_2_out_gg2(X, Y)) -> neq_2_out_gg2(s_11(X), s_11(Y))
if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_out_gg2(X, Z)) -> not_divides_2_out_gg2(Y, X)
if_pr_2_in_1_gg3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> if_pr_2_in_2_gg3(X, Y, pr_2_in_gg2(X, s_11(Y)))
if_pr_2_in_2_gg3(X, Y, pr_2_out_gg2(X, s_11(Y))) -> pr_2_out_gg2(X, s_11(s_11(Y)))
if_prime_1_in_1_g2(X, pr_2_out_gg2(s_11(s_11(X)), s_11(X))) -> prime_1_out_g1(s_11(s_11(X)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
PRIME_1_IN_G1(s_11(s_11(X))) -> IF_PRIME_1_IN_1_G2(X, pr_2_in_gg2(s_11(s_11(X)), s_11(X)))
PRIME_1_IN_G1(s_11(s_11(X))) -> PR_2_IN_GG2(s_11(s_11(X)), s_11(X))
PR_2_IN_GG2(X, s_11(s_11(Y))) -> IF_PR_2_IN_1_GG3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
PR_2_IN_GG2(X, s_11(s_11(Y))) -> NOT_DIVIDES_2_IN_GG2(s_11(s_11(Y)), X)
NOT_DIVIDES_2_IN_GG2(Y, X) -> IF_NOT_DIVIDES_2_IN_1_GG3(Y, X, div_3_in_gga3(X, Y, U))
NOT_DIVIDES_2_IN_GG2(Y, X) -> DIV_3_IN_GGA3(X, Y, U)
DIV_3_IN_GGA3(X, Y, Z) -> IF_DIV_3_IN_1_GGA4(X, Y, Z, quot_4_in_ggga4(X, Y, Y, Z))
DIV_3_IN_GGA3(X, Y, Z) -> QUOT_4_IN_GGGA4(X, Y, Y, Z)
QUOT_4_IN_GGGA4(s_11(X), s_11(Y), Z, U) -> IF_QUOT_4_IN_1_GGGA5(X, Y, Z, U, quot_4_in_ggga4(X, Y, Z, U))
QUOT_4_IN_GGGA4(s_11(X), s_11(Y), Z, U) -> QUOT_4_IN_GGGA4(X, Y, Z, U)
QUOT_4_IN_GGGA4(X, 0_0, s_11(Z), s_11(U)) -> IF_QUOT_4_IN_2_GGGA4(X, Z, U, quot_4_in_ggga4(X, s_11(Z), s_11(Z), U))
QUOT_4_IN_GGGA4(X, 0_0, s_11(Z), s_11(U)) -> QUOT_4_IN_GGGA4(X, s_11(Z), s_11(Z), U)
IF_NOT_DIVIDES_2_IN_1_GG3(Y, X, div_3_out_gga3(X, Y, U)) -> IF_NOT_DIVIDES_2_IN_2_GG4(Y, X, U, times_3_in_gga3(U, Y, Z))
IF_NOT_DIVIDES_2_IN_1_GG3(Y, X, div_3_out_gga3(X, Y, U)) -> TIMES_3_IN_GGA3(U, Y, Z)
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> IF_TIMES_3_IN_1_GGA4(X, Y, Z, times_3_in_gga3(X, Y, U))
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
IF_TIMES_3_IN_1_GGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> IF_TIMES_3_IN_2_GGA5(X, Y, Z, U, add_3_in_gga3(U, Y, Z))
IF_TIMES_3_IN_1_GGA4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> ADD_3_IN_GGA3(U, Y, Z)
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> IF_ADD_3_IN_1_GGA4(X, Y, Z, add_3_in_gga3(X, Y, Z))
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
IF_NOT_DIVIDES_2_IN_2_GG4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> IF_NOT_DIVIDES_2_IN_3_GG4(Y, X, Z, neq_2_in_gg2(X, Z))
IF_NOT_DIVIDES_2_IN_2_GG4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> NEQ_2_IN_GG2(X, Z)
NEQ_2_IN_GG2(s_11(X), s_11(Y)) -> IF_NEQ_2_IN_1_GG3(X, Y, neq_2_in_gg2(X, Y))
NEQ_2_IN_GG2(s_11(X), s_11(Y)) -> NEQ_2_IN_GG2(X, Y)
IF_PR_2_IN_1_GG3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> IF_PR_2_IN_2_GG3(X, Y, pr_2_in_gg2(X, s_11(Y)))
IF_PR_2_IN_1_GG3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> PR_2_IN_GG2(X, s_11(Y))
prime_1_in_g1(s_11(s_11(X))) -> if_prime_1_in_1_g2(X, pr_2_in_gg2(s_11(s_11(X)), s_11(X)))
pr_2_in_gg2(X, s_11(0_0)) -> pr_2_out_gg2(X, s_11(0_0))
pr_2_in_gg2(X, s_11(s_11(Y))) -> if_pr_2_in_1_gg3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
not_divides_2_in_gg2(Y, X) -> if_not_divides_2_in_1_gg3(Y, X, div_3_in_gga3(X, Y, U))
div_3_in_gga3(X, Y, Z) -> if_div_3_in_1_gga4(X, Y, Z, quot_4_in_ggga4(X, Y, Y, Z))
quot_4_in_ggga4(0_0, s_11(Y), s_11(Z), 0_0) -> quot_4_out_ggga4(0_0, s_11(Y), s_11(Z), 0_0)
quot_4_in_ggga4(s_11(X), s_11(Y), Z, U) -> if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_in_ggga4(X, Y, Z, U))
quot_4_in_ggga4(X, 0_0, s_11(Z), s_11(U)) -> if_quot_4_in_2_ggga4(X, Z, U, quot_4_in_ggga4(X, s_11(Z), s_11(Z), U))
if_quot_4_in_2_ggga4(X, Z, U, quot_4_out_ggga4(X, s_11(Z), s_11(Z), U)) -> quot_4_out_ggga4(X, 0_0, s_11(Z), s_11(U))
if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_out_ggga4(X, Y, Z, U)) -> quot_4_out_ggga4(s_11(X), s_11(Y), Z, U)
if_div_3_in_1_gga4(X, Y, Z, quot_4_out_ggga4(X, Y, Y, Z)) -> div_3_out_gga3(X, Y, Z)
if_not_divides_2_in_1_gg3(Y, X, div_3_out_gga3(X, Y, U)) -> if_not_divides_2_in_2_gg4(Y, X, U, times_3_in_gga3(U, Y, Z))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, add_3_in_gga3(U, Y, Z))
add_3_in_gga3(X, 0_0, X) -> add_3_out_gga3(X, 0_0, X)
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, add_3_out_gga3(U, Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_not_divides_2_in_2_gg4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_in_gg2(X, Z))
neq_2_in_gg2(s_11(X), 0_0) -> neq_2_out_gg2(s_11(X), 0_0)
neq_2_in_gg2(0_0, s_11(X)) -> neq_2_out_gg2(0_0, s_11(X))
neq_2_in_gg2(s_11(X), s_11(Y)) -> if_neq_2_in_1_gg3(X, Y, neq_2_in_gg2(X, Y))
if_neq_2_in_1_gg3(X, Y, neq_2_out_gg2(X, Y)) -> neq_2_out_gg2(s_11(X), s_11(Y))
if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_out_gg2(X, Z)) -> not_divides_2_out_gg2(Y, X)
if_pr_2_in_1_gg3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> if_pr_2_in_2_gg3(X, Y, pr_2_in_gg2(X, s_11(Y)))
if_pr_2_in_2_gg3(X, Y, pr_2_out_gg2(X, s_11(Y))) -> pr_2_out_gg2(X, s_11(s_11(Y)))
if_prime_1_in_1_g2(X, pr_2_out_gg2(s_11(s_11(X)), s_11(X))) -> prime_1_out_g1(s_11(s_11(X)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
NEQ_2_IN_GG2(s_11(X), s_11(Y)) -> NEQ_2_IN_GG2(X, Y)
prime_1_in_g1(s_11(s_11(X))) -> if_prime_1_in_1_g2(X, pr_2_in_gg2(s_11(s_11(X)), s_11(X)))
pr_2_in_gg2(X, s_11(0_0)) -> pr_2_out_gg2(X, s_11(0_0))
pr_2_in_gg2(X, s_11(s_11(Y))) -> if_pr_2_in_1_gg3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
not_divides_2_in_gg2(Y, X) -> if_not_divides_2_in_1_gg3(Y, X, div_3_in_gga3(X, Y, U))
div_3_in_gga3(X, Y, Z) -> if_div_3_in_1_gga4(X, Y, Z, quot_4_in_ggga4(X, Y, Y, Z))
quot_4_in_ggga4(0_0, s_11(Y), s_11(Z), 0_0) -> quot_4_out_ggga4(0_0, s_11(Y), s_11(Z), 0_0)
quot_4_in_ggga4(s_11(X), s_11(Y), Z, U) -> if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_in_ggga4(X, Y, Z, U))
quot_4_in_ggga4(X, 0_0, s_11(Z), s_11(U)) -> if_quot_4_in_2_ggga4(X, Z, U, quot_4_in_ggga4(X, s_11(Z), s_11(Z), U))
if_quot_4_in_2_ggga4(X, Z, U, quot_4_out_ggga4(X, s_11(Z), s_11(Z), U)) -> quot_4_out_ggga4(X, 0_0, s_11(Z), s_11(U))
if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_out_ggga4(X, Y, Z, U)) -> quot_4_out_ggga4(s_11(X), s_11(Y), Z, U)
if_div_3_in_1_gga4(X, Y, Z, quot_4_out_ggga4(X, Y, Y, Z)) -> div_3_out_gga3(X, Y, Z)
if_not_divides_2_in_1_gg3(Y, X, div_3_out_gga3(X, Y, U)) -> if_not_divides_2_in_2_gg4(Y, X, U, times_3_in_gga3(U, Y, Z))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, add_3_in_gga3(U, Y, Z))
add_3_in_gga3(X, 0_0, X) -> add_3_out_gga3(X, 0_0, X)
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, add_3_out_gga3(U, Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_not_divides_2_in_2_gg4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_in_gg2(X, Z))
neq_2_in_gg2(s_11(X), 0_0) -> neq_2_out_gg2(s_11(X), 0_0)
neq_2_in_gg2(0_0, s_11(X)) -> neq_2_out_gg2(0_0, s_11(X))
neq_2_in_gg2(s_11(X), s_11(Y)) -> if_neq_2_in_1_gg3(X, Y, neq_2_in_gg2(X, Y))
if_neq_2_in_1_gg3(X, Y, neq_2_out_gg2(X, Y)) -> neq_2_out_gg2(s_11(X), s_11(Y))
if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_out_gg2(X, Z)) -> not_divides_2_out_gg2(Y, X)
if_pr_2_in_1_gg3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> if_pr_2_in_2_gg3(X, Y, pr_2_in_gg2(X, s_11(Y)))
if_pr_2_in_2_gg3(X, Y, pr_2_out_gg2(X, s_11(Y))) -> pr_2_out_gg2(X, s_11(s_11(Y)))
if_prime_1_in_1_g2(X, pr_2_out_gg2(s_11(s_11(X)), s_11(X))) -> prime_1_out_g1(s_11(s_11(X)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
NEQ_2_IN_GG2(s_11(X), s_11(Y)) -> NEQ_2_IN_GG2(X, Y)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
NEQ_2_IN_GG2(s_11(X), s_11(Y)) -> NEQ_2_IN_GG2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
prime_1_in_g1(s_11(s_11(X))) -> if_prime_1_in_1_g2(X, pr_2_in_gg2(s_11(s_11(X)), s_11(X)))
pr_2_in_gg2(X, s_11(0_0)) -> pr_2_out_gg2(X, s_11(0_0))
pr_2_in_gg2(X, s_11(s_11(Y))) -> if_pr_2_in_1_gg3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
not_divides_2_in_gg2(Y, X) -> if_not_divides_2_in_1_gg3(Y, X, div_3_in_gga3(X, Y, U))
div_3_in_gga3(X, Y, Z) -> if_div_3_in_1_gga4(X, Y, Z, quot_4_in_ggga4(X, Y, Y, Z))
quot_4_in_ggga4(0_0, s_11(Y), s_11(Z), 0_0) -> quot_4_out_ggga4(0_0, s_11(Y), s_11(Z), 0_0)
quot_4_in_ggga4(s_11(X), s_11(Y), Z, U) -> if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_in_ggga4(X, Y, Z, U))
quot_4_in_ggga4(X, 0_0, s_11(Z), s_11(U)) -> if_quot_4_in_2_ggga4(X, Z, U, quot_4_in_ggga4(X, s_11(Z), s_11(Z), U))
if_quot_4_in_2_ggga4(X, Z, U, quot_4_out_ggga4(X, s_11(Z), s_11(Z), U)) -> quot_4_out_ggga4(X, 0_0, s_11(Z), s_11(U))
if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_out_ggga4(X, Y, Z, U)) -> quot_4_out_ggga4(s_11(X), s_11(Y), Z, U)
if_div_3_in_1_gga4(X, Y, Z, quot_4_out_ggga4(X, Y, Y, Z)) -> div_3_out_gga3(X, Y, Z)
if_not_divides_2_in_1_gg3(Y, X, div_3_out_gga3(X, Y, U)) -> if_not_divides_2_in_2_gg4(Y, X, U, times_3_in_gga3(U, Y, Z))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, add_3_in_gga3(U, Y, Z))
add_3_in_gga3(X, 0_0, X) -> add_3_out_gga3(X, 0_0, X)
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, add_3_out_gga3(U, Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_not_divides_2_in_2_gg4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_in_gg2(X, Z))
neq_2_in_gg2(s_11(X), 0_0) -> neq_2_out_gg2(s_11(X), 0_0)
neq_2_in_gg2(0_0, s_11(X)) -> neq_2_out_gg2(0_0, s_11(X))
neq_2_in_gg2(s_11(X), s_11(Y)) -> if_neq_2_in_1_gg3(X, Y, neq_2_in_gg2(X, Y))
if_neq_2_in_1_gg3(X, Y, neq_2_out_gg2(X, Y)) -> neq_2_out_gg2(s_11(X), s_11(Y))
if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_out_gg2(X, Z)) -> not_divides_2_out_gg2(Y, X)
if_pr_2_in_1_gg3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> if_pr_2_in_2_gg3(X, Y, pr_2_in_gg2(X, s_11(Y)))
if_pr_2_in_2_gg3(X, Y, pr_2_out_gg2(X, s_11(Y))) -> pr_2_out_gg2(X, s_11(s_11(Y)))
if_prime_1_in_1_g2(X, pr_2_out_gg2(s_11(s_11(X)), s_11(X))) -> prime_1_out_g1(s_11(s_11(X)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
ADD_3_IN_GGA3(s_11(X), Y, s_11(Z)) -> ADD_3_IN_GGA3(X, Y, Z)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PiDP
ADD_3_IN_GGA2(s_11(X), Y) -> ADD_3_IN_GGA2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
prime_1_in_g1(s_11(s_11(X))) -> if_prime_1_in_1_g2(X, pr_2_in_gg2(s_11(s_11(X)), s_11(X)))
pr_2_in_gg2(X, s_11(0_0)) -> pr_2_out_gg2(X, s_11(0_0))
pr_2_in_gg2(X, s_11(s_11(Y))) -> if_pr_2_in_1_gg3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
not_divides_2_in_gg2(Y, X) -> if_not_divides_2_in_1_gg3(Y, X, div_3_in_gga3(X, Y, U))
div_3_in_gga3(X, Y, Z) -> if_div_3_in_1_gga4(X, Y, Z, quot_4_in_ggga4(X, Y, Y, Z))
quot_4_in_ggga4(0_0, s_11(Y), s_11(Z), 0_0) -> quot_4_out_ggga4(0_0, s_11(Y), s_11(Z), 0_0)
quot_4_in_ggga4(s_11(X), s_11(Y), Z, U) -> if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_in_ggga4(X, Y, Z, U))
quot_4_in_ggga4(X, 0_0, s_11(Z), s_11(U)) -> if_quot_4_in_2_ggga4(X, Z, U, quot_4_in_ggga4(X, s_11(Z), s_11(Z), U))
if_quot_4_in_2_ggga4(X, Z, U, quot_4_out_ggga4(X, s_11(Z), s_11(Z), U)) -> quot_4_out_ggga4(X, 0_0, s_11(Z), s_11(U))
if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_out_ggga4(X, Y, Z, U)) -> quot_4_out_ggga4(s_11(X), s_11(Y), Z, U)
if_div_3_in_1_gga4(X, Y, Z, quot_4_out_ggga4(X, Y, Y, Z)) -> div_3_out_gga3(X, Y, Z)
if_not_divides_2_in_1_gg3(Y, X, div_3_out_gga3(X, Y, U)) -> if_not_divides_2_in_2_gg4(Y, X, U, times_3_in_gga3(U, Y, Z))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, add_3_in_gga3(U, Y, Z))
add_3_in_gga3(X, 0_0, X) -> add_3_out_gga3(X, 0_0, X)
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, add_3_out_gga3(U, Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_not_divides_2_in_2_gg4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_in_gg2(X, Z))
neq_2_in_gg2(s_11(X), 0_0) -> neq_2_out_gg2(s_11(X), 0_0)
neq_2_in_gg2(0_0, s_11(X)) -> neq_2_out_gg2(0_0, s_11(X))
neq_2_in_gg2(s_11(X), s_11(Y)) -> if_neq_2_in_1_gg3(X, Y, neq_2_in_gg2(X, Y))
if_neq_2_in_1_gg3(X, Y, neq_2_out_gg2(X, Y)) -> neq_2_out_gg2(s_11(X), s_11(Y))
if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_out_gg2(X, Z)) -> not_divides_2_out_gg2(Y, X)
if_pr_2_in_1_gg3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> if_pr_2_in_2_gg3(X, Y, pr_2_in_gg2(X, s_11(Y)))
if_pr_2_in_2_gg3(X, Y, pr_2_out_gg2(X, s_11(Y))) -> pr_2_out_gg2(X, s_11(s_11(Y)))
if_prime_1_in_1_g2(X, pr_2_out_gg2(s_11(s_11(X)), s_11(X))) -> prime_1_out_g1(s_11(s_11(X)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
TIMES_3_IN_GGA3(s_11(X), Y, Z) -> TIMES_3_IN_GGA3(X, Y, U)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
TIMES_3_IN_GGA2(s_11(X), Y) -> TIMES_3_IN_GGA2(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
QUOT_4_IN_GGGA4(X, 0_0, s_11(Z), s_11(U)) -> QUOT_4_IN_GGGA4(X, s_11(Z), s_11(Z), U)
QUOT_4_IN_GGGA4(s_11(X), s_11(Y), Z, U) -> QUOT_4_IN_GGGA4(X, Y, Z, U)
prime_1_in_g1(s_11(s_11(X))) -> if_prime_1_in_1_g2(X, pr_2_in_gg2(s_11(s_11(X)), s_11(X)))
pr_2_in_gg2(X, s_11(0_0)) -> pr_2_out_gg2(X, s_11(0_0))
pr_2_in_gg2(X, s_11(s_11(Y))) -> if_pr_2_in_1_gg3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
not_divides_2_in_gg2(Y, X) -> if_not_divides_2_in_1_gg3(Y, X, div_3_in_gga3(X, Y, U))
div_3_in_gga3(X, Y, Z) -> if_div_3_in_1_gga4(X, Y, Z, quot_4_in_ggga4(X, Y, Y, Z))
quot_4_in_ggga4(0_0, s_11(Y), s_11(Z), 0_0) -> quot_4_out_ggga4(0_0, s_11(Y), s_11(Z), 0_0)
quot_4_in_ggga4(s_11(X), s_11(Y), Z, U) -> if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_in_ggga4(X, Y, Z, U))
quot_4_in_ggga4(X, 0_0, s_11(Z), s_11(U)) -> if_quot_4_in_2_ggga4(X, Z, U, quot_4_in_ggga4(X, s_11(Z), s_11(Z), U))
if_quot_4_in_2_ggga4(X, Z, U, quot_4_out_ggga4(X, s_11(Z), s_11(Z), U)) -> quot_4_out_ggga4(X, 0_0, s_11(Z), s_11(U))
if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_out_ggga4(X, Y, Z, U)) -> quot_4_out_ggga4(s_11(X), s_11(Y), Z, U)
if_div_3_in_1_gga4(X, Y, Z, quot_4_out_ggga4(X, Y, Y, Z)) -> div_3_out_gga3(X, Y, Z)
if_not_divides_2_in_1_gg3(Y, X, div_3_out_gga3(X, Y, U)) -> if_not_divides_2_in_2_gg4(Y, X, U, times_3_in_gga3(U, Y, Z))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, add_3_in_gga3(U, Y, Z))
add_3_in_gga3(X, 0_0, X) -> add_3_out_gga3(X, 0_0, X)
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, add_3_out_gga3(U, Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_not_divides_2_in_2_gg4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_in_gg2(X, Z))
neq_2_in_gg2(s_11(X), 0_0) -> neq_2_out_gg2(s_11(X), 0_0)
neq_2_in_gg2(0_0, s_11(X)) -> neq_2_out_gg2(0_0, s_11(X))
neq_2_in_gg2(s_11(X), s_11(Y)) -> if_neq_2_in_1_gg3(X, Y, neq_2_in_gg2(X, Y))
if_neq_2_in_1_gg3(X, Y, neq_2_out_gg2(X, Y)) -> neq_2_out_gg2(s_11(X), s_11(Y))
if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_out_gg2(X, Z)) -> not_divides_2_out_gg2(Y, X)
if_pr_2_in_1_gg3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> if_pr_2_in_2_gg3(X, Y, pr_2_in_gg2(X, s_11(Y)))
if_pr_2_in_2_gg3(X, Y, pr_2_out_gg2(X, s_11(Y))) -> pr_2_out_gg2(X, s_11(s_11(Y)))
if_prime_1_in_1_g2(X, pr_2_out_gg2(s_11(s_11(X)), s_11(X))) -> prime_1_out_g1(s_11(s_11(X)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
QUOT_4_IN_GGGA4(X, 0_0, s_11(Z), s_11(U)) -> QUOT_4_IN_GGGA4(X, s_11(Z), s_11(Z), U)
QUOT_4_IN_GGGA4(s_11(X), s_11(Y), Z, U) -> QUOT_4_IN_GGGA4(X, Y, Z, U)
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
QUOT_4_IN_GGGA3(X, 0_0, s_11(Z)) -> QUOT_4_IN_GGGA3(X, s_11(Z), s_11(Z))
QUOT_4_IN_GGGA3(s_11(X), s_11(Y), Z) -> QUOT_4_IN_GGGA3(X, Y, Z)
From the DPs we obtained the following set of size-change graphs:
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
IF_PR_2_IN_1_GG3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> PR_2_IN_GG2(X, s_11(Y))
PR_2_IN_GG2(X, s_11(s_11(Y))) -> IF_PR_2_IN_1_GG3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
prime_1_in_g1(s_11(s_11(X))) -> if_prime_1_in_1_g2(X, pr_2_in_gg2(s_11(s_11(X)), s_11(X)))
pr_2_in_gg2(X, s_11(0_0)) -> pr_2_out_gg2(X, s_11(0_0))
pr_2_in_gg2(X, s_11(s_11(Y))) -> if_pr_2_in_1_gg3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
not_divides_2_in_gg2(Y, X) -> if_not_divides_2_in_1_gg3(Y, X, div_3_in_gga3(X, Y, U))
div_3_in_gga3(X, Y, Z) -> if_div_3_in_1_gga4(X, Y, Z, quot_4_in_ggga4(X, Y, Y, Z))
quot_4_in_ggga4(0_0, s_11(Y), s_11(Z), 0_0) -> quot_4_out_ggga4(0_0, s_11(Y), s_11(Z), 0_0)
quot_4_in_ggga4(s_11(X), s_11(Y), Z, U) -> if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_in_ggga4(X, Y, Z, U))
quot_4_in_ggga4(X, 0_0, s_11(Z), s_11(U)) -> if_quot_4_in_2_ggga4(X, Z, U, quot_4_in_ggga4(X, s_11(Z), s_11(Z), U))
if_quot_4_in_2_ggga4(X, Z, U, quot_4_out_ggga4(X, s_11(Z), s_11(Z), U)) -> quot_4_out_ggga4(X, 0_0, s_11(Z), s_11(U))
if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_out_ggga4(X, Y, Z, U)) -> quot_4_out_ggga4(s_11(X), s_11(Y), Z, U)
if_div_3_in_1_gga4(X, Y, Z, quot_4_out_ggga4(X, Y, Y, Z)) -> div_3_out_gga3(X, Y, Z)
if_not_divides_2_in_1_gg3(Y, X, div_3_out_gga3(X, Y, U)) -> if_not_divides_2_in_2_gg4(Y, X, U, times_3_in_gga3(U, Y, Z))
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, add_3_in_gga3(U, Y, Z))
add_3_in_gga3(X, 0_0, X) -> add_3_out_gga3(X, 0_0, X)
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
if_times_3_in_2_gga5(X, Y, Z, U, add_3_out_gga3(U, Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_not_divides_2_in_2_gg4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_in_gg2(X, Z))
neq_2_in_gg2(s_11(X), 0_0) -> neq_2_out_gg2(s_11(X), 0_0)
neq_2_in_gg2(0_0, s_11(X)) -> neq_2_out_gg2(0_0, s_11(X))
neq_2_in_gg2(s_11(X), s_11(Y)) -> if_neq_2_in_1_gg3(X, Y, neq_2_in_gg2(X, Y))
if_neq_2_in_1_gg3(X, Y, neq_2_out_gg2(X, Y)) -> neq_2_out_gg2(s_11(X), s_11(Y))
if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_out_gg2(X, Z)) -> not_divides_2_out_gg2(Y, X)
if_pr_2_in_1_gg3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> if_pr_2_in_2_gg3(X, Y, pr_2_in_gg2(X, s_11(Y)))
if_pr_2_in_2_gg3(X, Y, pr_2_out_gg2(X, s_11(Y))) -> pr_2_out_gg2(X, s_11(s_11(Y)))
if_prime_1_in_1_g2(X, pr_2_out_gg2(s_11(s_11(X)), s_11(X))) -> prime_1_out_g1(s_11(s_11(X)))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
IF_PR_2_IN_1_GG3(X, Y, not_divides_2_out_gg2(s_11(s_11(Y)), X)) -> PR_2_IN_GG2(X, s_11(Y))
PR_2_IN_GG2(X, s_11(s_11(Y))) -> IF_PR_2_IN_1_GG3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
not_divides_2_in_gg2(Y, X) -> if_not_divides_2_in_1_gg3(Y, X, div_3_in_gga3(X, Y, U))
if_not_divides_2_in_1_gg3(Y, X, div_3_out_gga3(X, Y, U)) -> if_not_divides_2_in_2_gg4(Y, X, U, times_3_in_gga3(U, Y, Z))
div_3_in_gga3(X, Y, Z) -> if_div_3_in_1_gga4(X, Y, Z, quot_4_in_ggga4(X, Y, Y, Z))
if_not_divides_2_in_2_gg4(Y, X, U, times_3_out_gga3(U, Y, Z)) -> if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_in_gg2(X, Z))
if_div_3_in_1_gga4(X, Y, Z, quot_4_out_ggga4(X, Y, Y, Z)) -> div_3_out_gga3(X, Y, Z)
times_3_in_gga3(0_0, Y, 0_0) -> times_3_out_gga3(0_0, Y, 0_0)
times_3_in_gga3(s_11(X), Y, Z) -> if_times_3_in_1_gga4(X, Y, Z, times_3_in_gga3(X, Y, U))
if_not_divides_2_in_3_gg4(Y, X, Z, neq_2_out_gg2(X, Z)) -> not_divides_2_out_gg2(Y, X)
quot_4_in_ggga4(0_0, s_11(Y), s_11(Z), 0_0) -> quot_4_out_ggga4(0_0, s_11(Y), s_11(Z), 0_0)
quot_4_in_ggga4(s_11(X), s_11(Y), Z, U) -> if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_in_ggga4(X, Y, Z, U))
quot_4_in_ggga4(X, 0_0, s_11(Z), s_11(U)) -> if_quot_4_in_2_ggga4(X, Z, U, quot_4_in_ggga4(X, s_11(Z), s_11(Z), U))
if_times_3_in_1_gga4(X, Y, Z, times_3_out_gga3(X, Y, U)) -> if_times_3_in_2_gga5(X, Y, Z, U, add_3_in_gga3(U, Y, Z))
neq_2_in_gg2(s_11(X), 0_0) -> neq_2_out_gg2(s_11(X), 0_0)
neq_2_in_gg2(0_0, s_11(X)) -> neq_2_out_gg2(0_0, s_11(X))
neq_2_in_gg2(s_11(X), s_11(Y)) -> if_neq_2_in_1_gg3(X, Y, neq_2_in_gg2(X, Y))
if_quot_4_in_1_ggga5(X, Y, Z, U, quot_4_out_ggga4(X, Y, Z, U)) -> quot_4_out_ggga4(s_11(X), s_11(Y), Z, U)
if_quot_4_in_2_ggga4(X, Z, U, quot_4_out_ggga4(X, s_11(Z), s_11(Z), U)) -> quot_4_out_ggga4(X, 0_0, s_11(Z), s_11(U))
if_times_3_in_2_gga5(X, Y, Z, U, add_3_out_gga3(U, Y, Z)) -> times_3_out_gga3(s_11(X), Y, Z)
if_neq_2_in_1_gg3(X, Y, neq_2_out_gg2(X, Y)) -> neq_2_out_gg2(s_11(X), s_11(Y))
add_3_in_gga3(X, 0_0, X) -> add_3_out_gga3(X, 0_0, X)
add_3_in_gga3(0_0, X, X) -> add_3_out_gga3(0_0, X, X)
add_3_in_gga3(s_11(X), Y, s_11(Z)) -> if_add_3_in_1_gga4(X, Y, Z, add_3_in_gga3(X, Y, Z))
if_add_3_in_1_gga4(X, Y, Z, add_3_out_gga3(X, Y, Z)) -> add_3_out_gga3(s_11(X), Y, s_11(Z))
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
IF_PR_2_IN_1_GG3(X, Y, not_divides_2_out_gg) -> PR_2_IN_GG2(X, s_11(Y))
PR_2_IN_GG2(X, s_11(s_11(Y))) -> IF_PR_2_IN_1_GG3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
not_divides_2_in_gg2(Y, X) -> if_not_divides_2_in_1_gg3(Y, X, div_3_in_gga2(X, Y))
if_not_divides_2_in_1_gg3(Y, X, div_3_out_gga1(U)) -> if_not_divides_2_in_2_gg2(X, times_3_in_gga2(U, Y))
div_3_in_gga2(X, Y) -> if_div_3_in_1_gga1(quot_4_in_ggga3(X, Y, Y))
if_not_divides_2_in_2_gg2(X, times_3_out_gga1(Z)) -> if_not_divides_2_in_3_gg1(neq_2_in_gg2(X, Z))
if_div_3_in_1_gga1(quot_4_out_ggga1(Z)) -> div_3_out_gga1(Z)
times_3_in_gga2(0_0, Y) -> times_3_out_gga1(0_0)
times_3_in_gga2(s_11(X), Y) -> if_times_3_in_1_gga2(Y, times_3_in_gga2(X, Y))
if_not_divides_2_in_3_gg1(neq_2_out_gg) -> not_divides_2_out_gg
quot_4_in_ggga3(0_0, s_11(Y), s_11(Z)) -> quot_4_out_ggga1(0_0)
quot_4_in_ggga3(s_11(X), s_11(Y), Z) -> if_quot_4_in_1_ggga1(quot_4_in_ggga3(X, Y, Z))
quot_4_in_ggga3(X, 0_0, s_11(Z)) -> if_quot_4_in_2_ggga1(quot_4_in_ggga3(X, s_11(Z), s_11(Z)))
if_times_3_in_1_gga2(Y, times_3_out_gga1(U)) -> if_times_3_in_2_gga1(add_3_in_gga2(U, Y))
neq_2_in_gg2(s_11(X), 0_0) -> neq_2_out_gg
neq_2_in_gg2(0_0, s_11(X)) -> neq_2_out_gg
neq_2_in_gg2(s_11(X), s_11(Y)) -> if_neq_2_in_1_gg1(neq_2_in_gg2(X, Y))
if_quot_4_in_1_ggga1(quot_4_out_ggga1(U)) -> quot_4_out_ggga1(U)
if_quot_4_in_2_ggga1(quot_4_out_ggga1(U)) -> quot_4_out_ggga1(s_11(U))
if_times_3_in_2_gga1(add_3_out_gga1(Z)) -> times_3_out_gga1(Z)
if_neq_2_in_1_gg1(neq_2_out_gg) -> neq_2_out_gg
add_3_in_gga2(X, 0_0) -> add_3_out_gga1(X)
add_3_in_gga2(0_0, X) -> add_3_out_gga1(X)
add_3_in_gga2(s_11(X), Y) -> if_add_3_in_1_gga1(add_3_in_gga2(X, Y))
if_add_3_in_1_gga1(add_3_out_gga1(Z)) -> add_3_out_gga1(s_11(Z))
not_divides_2_in_gg2(x0, x1)
if_not_divides_2_in_1_gg3(x0, x1, x2)
div_3_in_gga2(x0, x1)
if_not_divides_2_in_2_gg2(x0, x1)
if_div_3_in_1_gga1(x0)
times_3_in_gga2(x0, x1)
if_not_divides_2_in_3_gg1(x0)
quot_4_in_ggga3(x0, x1, x2)
if_times_3_in_1_gga2(x0, x1)
neq_2_in_gg2(x0, x1)
if_quot_4_in_1_ggga1(x0)
if_quot_4_in_2_ggga1(x0)
if_times_3_in_2_gga1(x0)
if_neq_2_in_1_gg1(x0)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)
The remaining Dependency Pairs were at least non-strictly be oriented.
PR_2_IN_GG2(X, s_11(s_11(Y))) -> IF_PR_2_IN_1_GG3(X, Y, not_divides_2_in_gg2(s_11(s_11(Y)), X))
With the implicit AFS there is no usable rule.
IF_PR_2_IN_1_GG3(X, Y, not_divides_2_out_gg) -> PR_2_IN_GG2(X, s_11(Y))
Used ordering: POLO with Polynomial interpretation:
POL(0_0) = 0
POL(if_quot_4_in_1_ggga1(x1)) = 0
POL(div_3_in_gga2(x1, x2)) = 0
POL(not_divides_2_in_gg2(x1, x2)) = 0
POL(not_divides_2_out_gg) = 0
POL(if_not_divides_2_in_2_gg2(x1, x2)) = 0
POL(neq_2_in_gg2(x1, x2)) = 0
POL(add_3_in_gga2(x1, x2)) = 0
POL(if_div_3_in_1_gga1(x1)) = 0
POL(div_3_out_gga1(x1)) = 0
POL(if_neq_2_in_1_gg1(x1)) = 0
POL(PR_2_IN_GG2(x1, x2)) = x2
POL(if_times_3_in_1_gga2(x1, x2)) = 0
POL(if_add_3_in_1_gga1(x1)) = 0
POL(add_3_out_gga1(x1)) = 0
POL(IF_PR_2_IN_1_GG3(x1, x2, x3)) = 1 + x2
POL(quot_4_in_ggga3(x1, x2, x3)) = 0
POL(quot_4_out_ggga1(x1)) = 0
POL(times_3_out_gga1(x1)) = 0
POL(if_not_divides_2_in_1_gg3(x1, x2, x3)) = 0
POL(if_quot_4_in_2_ggga1(x1)) = 0
POL(if_times_3_in_2_gga1(x1)) = 0
POL(times_3_in_gga2(x1, x2)) = 0
POL(s_11(x1)) = 1 + x1
POL(neq_2_out_gg) = 0
POL(if_not_divides_2_in_3_gg1(x1)) = 0
↳ PROLOG
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPPoloProof
↳ QDP
↳ DependencyGraphProof
IF_PR_2_IN_1_GG3(X, Y, not_divides_2_out_gg) -> PR_2_IN_GG2(X, s_11(Y))
not_divides_2_in_gg2(Y, X) -> if_not_divides_2_in_1_gg3(Y, X, div_3_in_gga2(X, Y))
if_not_divides_2_in_1_gg3(Y, X, div_3_out_gga1(U)) -> if_not_divides_2_in_2_gg2(X, times_3_in_gga2(U, Y))
div_3_in_gga2(X, Y) -> if_div_3_in_1_gga1(quot_4_in_ggga3(X, Y, Y))
if_not_divides_2_in_2_gg2(X, times_3_out_gga1(Z)) -> if_not_divides_2_in_3_gg1(neq_2_in_gg2(X, Z))
if_div_3_in_1_gga1(quot_4_out_ggga1(Z)) -> div_3_out_gga1(Z)
times_3_in_gga2(0_0, Y) -> times_3_out_gga1(0_0)
times_3_in_gga2(s_11(X), Y) -> if_times_3_in_1_gga2(Y, times_3_in_gga2(X, Y))
if_not_divides_2_in_3_gg1(neq_2_out_gg) -> not_divides_2_out_gg
quot_4_in_ggga3(0_0, s_11(Y), s_11(Z)) -> quot_4_out_ggga1(0_0)
quot_4_in_ggga3(s_11(X), s_11(Y), Z) -> if_quot_4_in_1_ggga1(quot_4_in_ggga3(X, Y, Z))
quot_4_in_ggga3(X, 0_0, s_11(Z)) -> if_quot_4_in_2_ggga1(quot_4_in_ggga3(X, s_11(Z), s_11(Z)))
if_times_3_in_1_gga2(Y, times_3_out_gga1(U)) -> if_times_3_in_2_gga1(add_3_in_gga2(U, Y))
neq_2_in_gg2(s_11(X), 0_0) -> neq_2_out_gg
neq_2_in_gg2(0_0, s_11(X)) -> neq_2_out_gg
neq_2_in_gg2(s_11(X), s_11(Y)) -> if_neq_2_in_1_gg1(neq_2_in_gg2(X, Y))
if_quot_4_in_1_ggga1(quot_4_out_ggga1(U)) -> quot_4_out_ggga1(U)
if_quot_4_in_2_ggga1(quot_4_out_ggga1(U)) -> quot_4_out_ggga1(s_11(U))
if_times_3_in_2_gga1(add_3_out_gga1(Z)) -> times_3_out_gga1(Z)
if_neq_2_in_1_gg1(neq_2_out_gg) -> neq_2_out_gg
add_3_in_gga2(X, 0_0) -> add_3_out_gga1(X)
add_3_in_gga2(0_0, X) -> add_3_out_gga1(X)
add_3_in_gga2(s_11(X), Y) -> if_add_3_in_1_gga1(add_3_in_gga2(X, Y))
if_add_3_in_1_gga1(add_3_out_gga1(Z)) -> add_3_out_gga1(s_11(Z))
not_divides_2_in_gg2(x0, x1)
if_not_divides_2_in_1_gg3(x0, x1, x2)
div_3_in_gga2(x0, x1)
if_not_divides_2_in_2_gg2(x0, x1)
if_div_3_in_1_gga1(x0)
times_3_in_gga2(x0, x1)
if_not_divides_2_in_3_gg1(x0)
quot_4_in_ggga3(x0, x1, x2)
if_times_3_in_1_gga2(x0, x1)
neq_2_in_gg2(x0, x1)
if_quot_4_in_1_ggga1(x0)
if_quot_4_in_2_ggga1(x0)
if_times_3_in_2_gga1(x0)
if_neq_2_in_1_gg1(x0)
add_3_in_gga2(x0, x1)
if_add_3_in_1_gga1(x0)